What Teachers Need to Know to Teach Mathematics at the Elementary Grades

Sybilla Beckmann

Department of Mathematics
University of Georgia

The Common Core K-5 domains that concern whole numbers

Counting and Cardinality: Kindergarten
Operations and Algebraic Thinking: K - 5
Numbers and Operations in Base Ten: K - 5

Counting and Cardinality: Kindergarten

If a child can correctly say the first five counting numbers, "one, two, three, four, five,"
will the child necessarily be able to determine how many blocks there are in this collection?
$\square \quad \square \quad \square \quad \square \quad \square$

Counting and Cardinality: Kindergarten

Child 1:
Child 2:

Child 3:

Child 4:

Counting and Cardinality

The last number word tells how many in all

Teacher:"How many blocks are there?"

Child 1 :

Teacher: "So how many blocks are there?"
Child 2:

Child 1:

Child 2:

Counting and Cardinality: Kindergarten

Kindergarteners coordinate two ways of thinking about what counting numbers are:

- they are a list
- they tell us how many are in a collection

Kindergarteners coordinate different ways of representing numbers:

- number words (names)
- number of objects
- number symbols

The Counting and Cardinality domain (Kindergarten)

Knowing the number names and the count sequence is the beginning of several intertwined progressions:

- the count sequence
(2) determining how many in all (leading to counting on)
(3) determining how many in all in a combined set (subitizing, conceptual subitizing, leading to derived methods)
(1) connecting number words with written base-ten numerals

Counting and Cardinality

Shifting between the number word list and how many: working towards counting on

Counting and Cardinality

Shifting between the number word list and how many: working towards counting on

Hide them.

Counting and Cardinality

Shifting between the number word list and how many: working towards counting on

Ask: How many bugs are there altogether?

Counting and Cardinality

Conceptual subitizing: working towards derived methods

Show briefly:

Counting and Cardinality

Conceptual subitizing: working towards derived methods

Then hide:

Ask: How many are there?

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$), multiplication and division (3-5) types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking, K-5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

Operations and Algebraic Thinking

"Add to" and "take from" word problems

Easier ones start in K, harder ones Grade 1 and up

	Result unknown	Change unknown	Start unknown
Add to	$2+3=?$	$2+?=3$	$?+3=5$
Take from	$5-2=?$	$5-?=3$	$?-2=3$

Operations and Algebraic Thinking

Add to, start unknown

Kwon has some cars. He gets 3 more cars. Now he has 8 cars in all. How many cars did Kwon have before he got more?

Note: students who rely only on keywords may mistakenly add 3 and 8.

Operations and Algebraic Thinking

"Put together" and "take apart" word problems

Easier ones start in K, all types are Grade 1 and up

	Total unknown	Addend unknown	Both addends unknown
Put together/	$3+2=?$	$3+?=5$	$5=0+5$
Take apart			$5=5+0$
			$3=?$
		$5=1+4$	
			$5=2+1$
		$5=3+2$	

Operations and Algebraic Thinking

 "Compare" word problemsGrade 1 and up

	Difference unknown	Bigger unknown	Smaller unknown
Compare	$2+?=5$	$2+3=?$	$5-3=?$
	$5-2=?$	$3+2=?$	$?+3=5$

Grade 2 and up: two step problems

Operations and Algebraic Thinking

Compare，bigger unknown，＂fewer＂wording

Jessica has some cards．Shauntay has 3 fewer cards than Jessica． Shauntay has 12 cards．How many cards does Jessica have？

Note：students who rely only on keywords may mistakenly subtract 3 from 12.

> Jessica:

Shauntay：

Operations and Algebraic Thinking

Links to later algebra
－＂Start unknown＂and＂change unknown＂＂Add to＂and＂take from＂ problems are＂algebra＂problems（as are some other types）．
－In＂take apart＂situations the equal sign can＇t be viewed as ＂calculate the answer．＂
－＂Take apart＂is necessary for level 3 addition strategies that use the associative property．

Operations and Algebraic Thinking

Links to later algebra

- "Start unknown" and "change unknown" "Add to" and "take from" problems are "algebra" problems (as are some other types).
- In "take apart" situations the equal sign can't be viewed as "calculate the answer."

$$
5=2+3
$$

- "Take apart" is necessary for level 3 addition strategies that use the associative property.

Operations and Algebraic Thinking

Links to later algebra

- "Start unknown" and "change unknown" "Add to" and "take from" problems are "algebra" problems (as are some other types).
- In "take apart" situations the equal sign can't be viewed as "calculate the answer."

$$
5=2+3
$$

- "Take apart" is necessary for level 3 addition strategies that use the associative property.

Operations and Algebraic Thinking

Levels in single－digit additions and associated subtractions

Progression of numerical strategies in working toward fluency－not rote memorization of the single－digit facts：
－Level 1：count all（K）
－Level 2：count on，count on from larger，count on to subtract （Grade 1）
－Level 3：derived fact methods，especially make－a－ten methods （Grades 1，2）

Operations and Algebraic Thinking

Levels in single-digit additions and associated subtractions

Progression of numerical strategies in working toward fluency - not rote memorization of the single-digit facts:

- Level 1: count all (K)
- Level 2: count on, count on from larger, count on to subtract (Grade 1)
- Level 3: derived fact methods, especially make-a-ten methods (Grades 1, 2)

Operations and Algebraic Thinking

Levels in single-digit additions and associated subtractions

Progression of numerical strategies in working toward fluency - not rote memorization of the single-digit facts:

- Level 1: count all (K)
- Level 2: count on, count on from larger, count on to subtract (Grade 1)
- Level 3: derived fact methods, especially make-a-ten methods (Grades 1, 2)

Operations and Algebraic Thinking

Level 2: Counting on

What is $6+3 ?$

Operations and Algebraic Thinking

Level 2：Applying commutativity to count on from larger

What is $3+6 ?$

$3+6000 \quad 000000$
 $6+3$
 00000000

$$
\begin{aligned}
" \text { so } 6+3 & =9 \\
3+6 & =9 "
\end{aligned}
$$

Operations and Algebraic Thinking

Level 2：Counting on to subtract

A $7-5=\square$ problem：There were 7 nuts．Then a mouse ate 5 ．How many nuts are left？Children can also solve this by counting on from 5：

$$
\begin{array}{llll}
& 6 & 7 \\
\text { "I took } & \text { to } \\
\text { away 5" } & 0 & 0
\end{array} \quad \text { "so } 2 \text { are left" }
$$

This method links subtraction and addition：

$$
7-5=\square \leftrightarrow 5+\square=7
$$

Operations and Algebraic Thinking

Level 3: Emphasizing grouping by tens

$$
8+6
$$

Operations and Algebraic Thinking

Level 3: Emphasizing grouping by tens

$8+6$
2
2

Operations and Algebraic Thinking

Level 3: Emphasizing grouping by tens

Operations and Algebraic Thinking

Level 3 : Emphasizing grouping by tens

$$
8+6=8+(2+4)=(8+2)+4=14
$$

Operations and Algebraic Thinking

Level 3: Emphasizing grouping by tens

13-9

Operations and Algebraic Thinking

 Level 3: Emphasizing grouping by tens

Operations and Algebraic Thinking

 Level 3: Emphasizing grouping by tens
take 9 from 10

Operations and Algebraic Thinking

 Level 3: Emphasizing grouping by tens
take 9
from 10 1 and 3 make 4

Operations and Algebraic Thinking

Level 3 requires breaking numbers apart into partners

Operations and Algebraic Thinking Connection to Geometry

Decomposing a square and recomposing

A 1st grade teacher might ask:
"What if we cut the square from one corner to the opposite corner? What shapes will we get?"

Operations and Algebraic Thinking Connection to Geometry

Decomposing a square and recomposing
"We get two triangles!"

Can we put the triangles together in other ways?

Operations and Algebraic Thinking Connection to Geometry

Decomposing a square and recomposing
"We get two triangles!"

Can we put the triangles together in other ways?

Operations and Algebraic Thinking Connection to Geometry

Decomposing a square and recomposing

Operations and Algebraic Thinking

Grade 3

Multiplication and division are a priority in Grade 3
Addition and subtraction are maintained at Grade 3

- through multi-step problems
- maintaining or developing fluency within 1000

Operations and Algebraic Thinking

Types of multiplication and division problems（some beyond Grade 3）

Operations and Algebraic Thinking

 Multiplication and division| A | | | | |
| :---: | :--- | :--- | :--- | :--- |
| \uparrow | \times | B | \uparrow | C |
| \＃of groups | | amount in | | |
| | | | \uparrow | |
| | one whole | | | |
| | group | | | |

Unknown product	$3 \times 4=?$	
Group size unknown		
＂How many in each group？＂division	$3 \times ?=12$	$12 \div 3=$ ？
Number of groups unknown ＂How many groups？＂division	$? \times 4=12$	$12 \div 4=?$

Operations and Algebraic Thinking

Levels in single－digit multiplications and associated divisions

Progression of numerical strategies in working toward fluency－not rote memorization of the single－digit facts：
－Level 1：Make and count all（Grade 2）
－Level 2：＂Skip counting＂
8×3 count by 3 s eight times $24 \div 3$ count by 3 s until 24 is reached，keeping track of how many counts
－Level 3：Make use of properties（perhaps implicitly） I know 6×5 is 30 ，so 7×5 is 5 more， 35 ．

Supported by examining patterns in the multiplication table

Operations and Algebraic Thinking

Levels in single－digit multiplications and associated divisions

Progression of numerical strategies in working toward fluency－not rote memorization of the single－digit facts：
－Level 1：Make and count all（Grade 2）
－Level 2：＂Skip counting＂
8×3 count by 3 s eight times $24 \div 3$ count by 3 s until 24 is reached，keeping track of how many counts
－Level 3：Make use of properties（perhaps implicitly） I know 6×5 is 30 ，so 7×5 is 5 more， 35 ．

Supported by examining patterns in the multiplication table

Operations and Algebraic Thinking

Levels in single-digit multiplications and associated divisions

Progression of numerical strategies in working toward fluency - not rote memorization of the single-digit facts:

- Level 1: Make and count all (Grade 2)
- Level 2: "Skip counting"
8×3 count by 3 s eight times
$24 \div 3$ count by 3 s until 24 is reached, keeping track of how many counts
- Level 3: Make use of properties (perhaps implicitly) I know 6×5 is 30 , so 7×5 is 5 more, 35 .

Supported by examining patterns in the multiplication table

Operations and Algebraic Thinking

Levels in single－digit multiplications and associated divisions

Progression of numerical strategies in working toward fluency－not rote memorization of the single－digit facts：
－Level 1：Make and count all（Grade 2）
－Level 2：＂Skip counting＂
8×3 count by 3 s eight times
$24 \div 3$ count by 3 s until 24 is reached，keeping track of how many counts
－Level 3：Make use of properties（perhaps implicitly）

Supported by examining patterns in the multiplication table

Operations and Algebraic Thinking

Levels in single-digit multiplications and associated divisions

Progression of numerical strategies in working toward fluency — not rote memorization of the single-digit facts:

- Level 1: Make and count all (Grade 2)
- Level 2: "Skip counting"
8×3 count by 3 s eight times
$24 \div 3$ count by 3 s until 24 is reached, keeping track of how many counts
- Level 3: Make use of properties (perhaps implicitly) I know 6×5 is 30 , so 7×5 is 5 more, 35 .

Supported by examining patterns in the multiplication table

Operations and Algebraic Thinking

Level 2: Count by list supported with an array

Operations and Algebraic Thinking

Level 3 makes use of properties of multiplication (sometimes implicit).

Is the commutative property of multiplication obvious?

for all numbers A, B

Operations and Algebraic Thinking

Level 3 makes use of properties of multiplication (sometimes implicit).
Is the commutative property of multiplication obvious?

$$
A \times B=B \times A
$$

for all numbers A, B

Operations and Algebraic Thinking

The commutative property of multiplication

A 3rd grade perspective on why the commutative property of multiplication is not obvious:

5×3

Operations and Algebraic Thinking

The commutative property of multiplication

Operations and Algebraic Thinking

The commutative property of multiplication

Operations and Algebraic Thinking

The commutative property of multiplication

5×3

Operations and Algebraic Thinking

Level 3: Using relationships to derive new facts from other facts

$6 \times 7=6 \times 5+6 \times 2$

Operations and Algebraic Thinking

Multi-step word problems in Grade 4 and up

A big penguin will eat 3 times as much fish as a small penguin. The big penguin will eat 420 grams of fish. All together, how much will the two penguins eat?

$$
420 \mathrm{~g}
$$

Small penguin:

Connection to Geometric Measurement

Number and Operations in Base Ten, K - 5

Summary of the domain

Representing, comparing, and calculating with numbers in base ten.

- Use strategies based on place value and properties of operations
- Illustrate and explain calculations with representations such as mathematical drawings
- MP2 Reason abstractly and quantitatively
- MP3 Construct viable arguments and critique the reasoning of others
- MP5 Use appropriate tools strategically
- MP6 Attend to precision
- MP7 Look for and make use of structure
- MP8 Look for and express regularity in repeated reasoning
- Work towards fluency with understanding

Number and Operations in Base Ten, K - 5

Summary of the domain

Representing, comparing, and calculating with numbers in base ten.

- Use strategies based on place value and properties of operations
- Illustrate and explain calculations with representations such as mathematical drawings
- MP2 Reason abstractly and quantitatively
- MP3 Construct viable arguments and critique the reasoning of others
- MP5 Use appropriate tools strategically
- MP6 Attend to precision
- MP7 Look for and make use of structure
- MP8 Look for and express regularity in repeated reasoning
- Work towards fluency with understanding

Number and Operations in Base Ten, K - 5

Summary of the domain

Representing, comparing, and calculating with numbers in base ten.

- Use strategies based on place value and properties of operations
- Illustrate and explain calculations with representations such as mathematical drawings
- MP2 Reason abstractly and quantitatively
- MP3 Construct viable arguments and critique the reasoning of others
- MP5 Use appropriate tools strategically
- MP6 Attend to precision
- MP7 Look for and make use of structure
- MP8 Look for and express regularity in repeated reasoning
- Work towards fluency with understanding

Number and Operations in Base Ten

Understanding 11 through 19 as a ten and some ones

Kindergarten: Numbers 11 through 19 are ten ones and some more ones
Grade 1: Ten ones form a unit of ten

Number and Operations in Base Ten

Difficulties with spoken number words in English:

- "eleven," "twelve" do not sound like ten and one, ten and two
- "thirteen," "fourteen," etc. reverse the ones and tens
- teen words often sound like decade words: sixteen versus sixty
- "teen" may not be recognized as meaning ten

Difficulties with written numerals:

- 16 looks like "one six" and not like 1 ten and 6 .

Number and Operations in Base Ten

Understanding 11 through 19 as a ten and some ones

Layered place value cards

Number and Operations in Base Ten

Mathematical drawings to show base ten structure

Unitizing

MP7 Look for and make use of structure

10 ones are grouped to form one ten

Unitizing

MP7 Look for and make use of structure

1 whole

Number and Operations in Base Ten

Add by counting on with tens and ones

Grade 1 numerical work side by side with mathematical drawing

Number and Operations in Base Ten

Add tens and ones separately

Grade 1 numerical work side by side with a mathematical drawing

Number and Operations in Base Ten

Subtraction

Important: no two-digit subtraction involving both tens and ones until it is done with regrouping.

This is so that the error of always subtracting the smaller digit from the larger digit does not take hold.

Understanding and explaining subtraction

Grade 2

62
-45

Understanding and explaining subtraction

Grade 2

$$
\begin{array}{rr}
62|||\mid & =0 \\
-45 & 4 \\
5
\end{array}
$$

Understanding and explaining subtraction

Grade 2

$$
\begin{aligned}
& -45 \quad 4 \quad 5
\end{aligned}
$$

Understanding and explaining subtraction

Grade 2

Understanding and explaining subtraction

Grade 2

Number and Operations in Base Ten

Grade 2: Mathematical drawing to represent 1 hundred as 10 tens

Number and Operations in Base Ten

Grade 3: Multiplying multiples of 10

$$
3 \times 50
$$

3 times (5 tens)
(3 times 5) tens

$$
\begin{aligned}
3 \times 50 & =3 \times(5 \times 10) \\
& =(3 \times 5) \times 10 \\
& =15 \times 10=150
\end{aligned}
$$

Uses the associative property of multiplication

Number and Operations in Base Ten

Grade 4：Explaining multiplication

Simplified array／area drawing for 8×549

	$549=$	500	40	9
8		$8 \times 500=$	$8 \times 40=$	$\begin{aligned} & 8 \times 9 \\ & =72 \end{aligned}$
		8×5 hundreds $=$	8×4 tens $=$	
		40 hundreds	32 tens	

Number and Operations in Base Ten

Grade 4: Explaining multiplication

Three accessible ways to record the standard algorithm:

Left to right showing the partial products		Right to left showing the partial products		Right to left recording the carries below
549		549		549
$\times 8$	thinking:	$\times 8$	thinking:	$\times 8$
4000	8×5 hundreds	72	8×9	$40^{3} 22$
320	8×4 tens	320	8×4 tens	4392
72	8×9	4000	8×5 hundreds	
4392		4392		

Number and Operations in Base Ten

Grade 4: Explaining multiplication

Simplified array/area drawing for 36×94

Number and Operations in Base Ten

Grade 4: Explaining multiplication

Simplified array/area drawing for 36×94

Number and Operations in Base Ten

Grade 4：Explaining multiplication

Two accessible，right to left ways to record the standard algorithm：

Showing the partial products

Recording the carries below for correct place value placement
$\begin{array}{r}94 \\ \times 36 \\ \hline\end{array}$
 by 3 tens in this row

Connection to geometric measurement

Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

Thinking:

> Divide
> 7 hundreds, 4 tens, 5 ones equally among 3 groups, starting with hundreds.

Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

$$
\begin{gathered}
2 \\
3 \longdiv { 7 4 5 } \\
\frac{-6}{1}
\end{gathered}
$$

Thinking:
7 hundreds $\div 3$
each group gets
2 hundreds;
1 hundred is left.

Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

$$
\begin{gathered}
2 \\
3 \longdiv { 7 4 5 } \\
\frac{-6}{14}
\end{gathered}
$$

Thinking:

```
Unbundle 1 hundred.
Now I have
10 tens + 4 tens
14 tens.
```


Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

$$
\begin{gathered}
24 \\
3 \longdiv { 7 4 5 } \\
\frac{-6}{14} \\
\frac{-12}{2}
\end{gathered}
$$

Thinking:

```
14 tens \div 3
each group gets
4 tens;
2 tens are left.
```


Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

$$
\begin{gathered}
24 \\
3 \longdiv { 7 4 5 } \\
\frac{-6}{14} \\
\frac{-12}{25}
\end{gathered}
$$

Thinking:
Unbundle 2 tens.
Now I have
$20+5=25$ left.

Number and Operations in Base Ten

Grade 4: Explaining division

$$
745 \div 3=?
$$

$$
\begin{gathered}
248 \\
3 \longdiv { 7 4 5 } \\
\frac{-6}{14} \\
\frac{-12}{25}
\end{gathered}
$$

Thinking:

$$
25 \div 3
$$

each group gets 8 ; 1 is left.

Number and Operations in Base Ten

Division：common errors

Case A：

$3 \longdiv { 2 }$
 $\frac{6}{2}$

What to do about the 0 ？

2 hundreds
$=20$ tens

Case B：

Stop now because of the 0 ？

No，there are still 5 ones left．

Case C：

Stop now because 11 is less than 14 ？

No，it is 11 tens，so there are still $110+4=114$ left．

Number and Operations in Base Ten

Division: what to do with the remainder?
(1) Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
(4) Mixed number answer
(3) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Division: what to do with the remainder?

- Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
(4) Mixed number answer
(5) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Division: what to do with the remainder?
(3) Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
4. Mixed number answer
(5) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Division: what to do with the remainder?
(3) Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
(1) Mixed number answer
(3) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Division: what to do with the remainder?
(3) Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
(4) Mixed number answer
(0) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Division: what to do with the remainder?

(-) Ignore the remainder
(2) Add 1 to the quotient
(3) The remainder is the answer
(4) Mixed number answer
(0) Decimal answer
(6) Use two units in the answer: A 14 foot long piece of rope is divided into 3 equal pieces. How long is each piece? 4 feet, 8 inches

Number and Operations in Base Ten

Also in the Number and Operations in Base Ten progression: Decimals and operations with decimals

Number and Operations Base Ten Connection to Fractions

1 whole submarine sandwich

3 subs divided equally among 5 people

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

$$
\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5} \quad 1 \text { person's share is } 3 / 5 \text { of a sub }
$$

